Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Implant Dent Relat Res ; 26(2): 402-414, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38317374

ABSTRACT

AIMS: The aim of this randomized controlled clinical trial was to compare the gene expression, micro-CT, histomorphometrical analysis between biphasic calcium phosphate (BCP) of 70/30 ratio and deproteinized bovine bone mineral (DBBM) in sinus augmentation. MATERIALS AND METHODS: Twenty-four patients in need for sinus floor augmentation through lateral approach were randomized into BCP 70/30 ratio or DBBM. After at least 6 months of healing, a total of 24 bone specimens were collected from the entire height of the augmented bone at the area of implant placement and underwent micro-CT, histomorphometric and gene expression analysis. The 12 bone specimens of BCP 70/30 ratio were equally allocated to micro-CT and histologic analysis (test group, n = 6) and gene expression analysis (test group, n = 6). Similarly, the 12 bone specimens of DBBM were also allocated to micro-CT and histologic analysis (control group, n = 6) and gene expression analysis (control group, n = 6). The newly formed bone, remaining graft materials and relative change in gene expression of four target genes were assessed. RESULTS: The micro-CT results showed no statistically significant difference in the ratio of bone volume to total volume (BV/TV ratio) for the two groups (BCP 41.51% vs. DBBM 40.97%) and the same was true for residual graft material to total volume (GV/TV ratio, BCP 9.97% vs. DBBM 14.41%). Similarly, no significant difference was shown in the histological analysis in terms of bone formation, (BCP 31.43% vs. DBBM was 30.09%) and residual graft area (DBBM 40.76% vs. BCP 45.06%). With regards to gene expression, the level of ALP was lower in both groups of bone grafted specimens compared with the native bone. On the contrary, the level of OSX, IL-1B and TRAP was higher in augmented bone of both groups compared with the native bone. However, the relative difference in all gene expressions between BCP and DBBM group was not significant. CONCLUSIONS: The BCP, HA/ß-TCP ratio of 70/30 presented similar histological and micro-CT outcomes in terms of new bone formation and residual graft particles with DBBM. The gene expression analysis revealed different gene expression patterns between augmented and native bone, but showed no significant difference between the two biomaterials.


Subject(s)
Bone Substitutes , Hydroxyapatites , Sinus Floor Augmentation , Humans , Animals , Cattle , Sinus Floor Augmentation/methods , X-Ray Microtomography , Bone Substitutes/therapeutic use , Minerals , Gene Expression , Maxillary Sinus , Bone Transplantation/methods , Biological Products
2.
BDJ Open ; 9(1): 25, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37661198

ABSTRACT

OBJECTIVE: This study aimed to develop enamel substitute material using a mechanochemical technique. MATERIALS AND METHODS: Hydroxyapatite was synthesized with and without tricalcium phosphate under uniaxial pressing of 10 and 17 MPa (HA10, HA17, BCP10, and BCP17), followed by sintering at 1250 °C for 2 h. Human enamel and dentin blocks were used as control groups. The mechanical properties were determined by compressive strength test and Vickers microhardness. The data were analyzed with one-way ANOVA and LSD post-hoc test (α = 0.05). The phase formation and morphology of the specimens were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). RESULTS: HA17 and HA10 had compressive strength values comparable to enamel and dentin, respectively (p > 0.05). The microhardness of all synthesized groups was significantly higher than that of tooth structures (p < 0.05). From the XRD graphs, only the hydroxyapatite peak was observed in the control and HA groups. SEM images showed homogeneous hydroxyapatite grains in all groups, while the BCP groups contained higher porosities. CONCLUSIONS: Both HA10 and HA17 are suitable for use as the inorganic part of dentin and enamel substitutes.

3.
Clin Oral Implants Res ; 34(8): 850-862, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37314107

ABSTRACT

AIMS: The aim of this randomized, double-blind, clinical trial was to compare the stability of the horizontal dimensions (facial bone thickness) of augmented bone using biphasic calcium phosphate (BCP) with hydroxyapatite/ß-tricalcium phosphate ratio of either 60/40 or 70/30. MATERIALS AND METHODS: Sixty dental implants placed with contour augmentation in the esthetic zone were randomized to 60/40 BCP (n = 30) or 70/30 BCP (n = 30). Cone-beam computed tomographic was used to assess facial bone thickness post-implantation and 6 months later at implant platform and 2, 4, and 6 mm apical to it. RESULTS: The percentage of horizontal dimension reduction was 23.64%, 12.83%, 9.62%, and 8.21% in 70/30 BCP group, while 44.26%, 31.91%, 25.88%, and 21.49% in 60/40 BCP group at the level of the implant platform and 2, 4, and 6 mm apical, respectively. Statistically significant difference was found at 6 months at all levels of measurement (p-value < .05). CONCLUSIONS: BCP bone grafts with HA/ß-TCP ratio of 60/40 and 70/30 showed comparable outcomes for contour augmentation simultaneously with implant placement. Interestingly, the 70/30 ratio was significantly superior in maintaining facial thickness and showed more stable horizontal dimensions of the augmented site.


Subject(s)
Alveolar Ridge Augmentation , Esthetics, Dental , Bone Regeneration , Hydroxyapatites , Bone Transplantation , Alveolar Ridge Augmentation/methods , Dental Implantation, Endosseous/methods
4.
Cells ; 11(20)2022 10 13.
Article in English | MEDLINE | ID: mdl-36291084

ABSTRACT

Bone tissue engineering is a complicated field requiring concerted participation of cells, scaffolds, and osteoactive molecules to replace damaged bone. This study synthesized a chitosan-based (CS) scaffold incorporated with trichostatin A (TSA), an epigenetic modifier molecule, to achieve promising bone regeneration potential. The scaffolds with various biphasic calcium phosphate (BCP) proportions: 0%, 10%, 20%, and 40% were fabricated. The addition of BCP improved the scaffolds' mechanical properties and delayed the degradation rate, whereas 20% BCP scaffold matched the appropriate scaffold requirements. The proper concentration of TSA was also validated. Our developed scaffold released TSA and sustained them for up to three days. The scaffold with 800 nM of TSA showed excellent biocompatibility and induced robust osteoblast-related gene expression in the primary human periodontal ligament cells (hPDLCs). To evaluate in vivo bone regeneration potential, the scaffolds were implanted in the mice calvarial defect model. The excellent bone regeneration ability was further demonstrated in the micro-CT and histology sections compared to both negative control and commercial bone graft product. New bone formed in the CS/BCP/TSA group revealed a trabeculae-liked characteristic of the mature bone as early as six weeks. The CS/BCP/TSA scaffold is an up-and-coming candidate for the bone tissue engineering scaffold.


Subject(s)
Chitosan , Animals , Humans , Mice , Bone Regeneration , Chitosan/pharmacology , Epigenesis, Genetic
5.
Clin Exp Dent Res ; 7(5): 726-738, 2021 10.
Article in English | MEDLINE | ID: mdl-33410285

ABSTRACT

BACKGROUND: Polymeric sponge technique is recommended for developing the desired porosity of Biphasic calcium phosphate (BCP) which may favor bone regeneration. PURPOSE: To investigate the healing of BCP with ratio of HA30/ß-TCP70 (HA30) and HA70/ß-TCP30 (HA70) polymeric sponge preparation, compare to commercial BCP (MBCP+TM). MATERIALS AND METHODS: Materials were tested X-ray diffraction (XRD) pattern and scanning electron microscope (SEM) analysis. In eight male pigs, six calvarial defects were created in each subject. The defects were the filled with 1 cc of autogenous bone, MBCP+TM (MBCP), HA30, HA70, and left empty (negative group). The new bone formations, residual material particles and bone-to-graft contacts were analyzed at 4, 8, 12 and 16 weeks. RESULTS: Fabricated BCP showed well-distributed porosity. At 16 weeks, new bone formations were 45.26% (autogenous), 33.52% (MBCP), 24.34% (HA30), 19.43% (HA70) and 3.37% (negative). Residual material particles were 1.88% (autogenous), 17.58% (MBCP), 26.74% (HA30) and 37.03% (HA70). These values were not significant differences (Bonferroni correction <0.005). Bone-to-graft contacts were 73.68% (MBCP), which was significantly higher than 41.68% (HA30) and 14.32% (HA70; Bonferroni correction <0.017). CONCLUSIONS: Polymeric sponge technique offers well-distributed porosity. The new bone formation and residual material particles were comparable to MBCP+TM, but the bone-to-graft contact was lower than MBCP+TM.


Subject(s)
Bone Substitutes , Animals , Bone Regeneration , Bone Transplantation , Humans , Male , Skull/diagnostic imaging , Skull/surgery , Swine , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...